

Forward Pixel Sensor Alignment

11 October 2005

Greg Derylo FNAL / PPD / MD / SiDet derylo@fnal.gov

- Location of sensors on half-disks must be known for alignment
- Sensor locations will be measured after half-disk assembly
- Therefore:
 - ⇒ Sensors positioned on panels ~50 µm
 - ⇒ Panels positioned on half-disks to within a fraction of a mm

• Basic Concept:

- ⇒ Measure sensors on panels relative to each other (optical)
- ⇒ Install panels
- ⇒ Measure visible sensors relative to half-disk features (optical + touch)
- ⇒ Install half-disk in service cylinder
- ⇒ Measure half-disk survey features relative to the service cylinder (touch probe)
- ⇒ Translate sensor position data into higher level coordinate systems to help describe detector alignment

- Sensors only partially viewable on a half-disk
- Positions of unmeasured sensors must be extrapolated from the inspected positions of viewable sensors
- Therefore, sensor locations to be surveyed on each panel with a panel-specific coordinate system based on the largest viewable sensor
 - \Rightarrow 3-plaquette panel \Rightarrow 2x4 sensor
 - \Rightarrow 4-plaquette panel \Rightarrow 2x4 sensor

- Inspect sensor positions on a panel during the assembly process based on fiducial & guard ring edge measurements
 - ⇒ OGP CMM accuracy over a panel <3 microns XY but ~10 in Z
 - ⇒ Positions described relative to the 2x4 sensors
 - ⇒ N_{chips} x 20 fiducials per sensor (maps shown in document database files 406 and 458)
 - ⇒ Selection of which features to measure will require careful consideration

- After panel installation, sensors must be measured relative to the ruby ball positions (one side at a time)
- OGP CMM has dual measurement heads
 - ⇒ Touch probe measurement of ruby balls
 - XYZ accurate to within a few microns over a half-disk
 - ⇒ Optical measurement of sensors
 - Need at least 3 XYZ points per sensor viewed
 - X&Y accuracy good to about 3 microns over a half-disk
 - Z accuracy on 20° tilted surface is not as good, and will depend on lens & magnification choices and focusing procedures. 20 to 30 micron accuracy?
 - ⇒ The two heads can be cross-calibrated to within a few microns

- OGP CMM optical working distance is sufficient to reach the 2x4 sensor on each half-disk (even with a 5X lens)
- Lens options are being investigated for coverage of sensors at the extreme inner and outer radii.
 - \Rightarrow Higher mag. improves accuracy in X, Y, and Z
 - ⇒ Higher mag. reduces working distance, resulting in clearance issues
 - ⇒ Higher mag. requires brighter illumination, which can be complicated by the 20° panel twist angle

- Install half-disks into service cylinder
- In the service cylinder coordinate system (based on the mounting balls), survey the ruby balls on each face of the half-disks with a CMM touch probe
- Cylinders installed in CMS located at the 200 micron level
- Alignment data sets to be translated into global CMS coordinate system
 - ⇒ Sensors on panels
 - ⇒ Sensors/panels on half-disks
 - ⇒ Half-disks in service cylinder
 - ⇒ Service cylinders in CMS

- Input from the software / tracking effort?
 - ⇒ Preferred sensor orientation to be referenced?
 - Origin where?
 - Axes defined how?
 - Shouldn't use chip readout order as a reference?
 - ⇒ Preferences on the organization of data?
 - ⇒ Other?